智能化是未来汽车制造业的大方向,在燃油车上聊油耗、聊动力、聊引擎轰鸣声的时代已成为过去,现在的人们,更愿意关注的是触控大屏、车联网、智能AI助手以及——无人驾驶。
电动车正处于快速发展的阶段,各类新技术不断在电动车上得以实现,无人驾驶也不例外。由于科普知识的欠缺,大部分人对无人驾驶都有所误解,不仅包括它的功能实质,还包括它的技术水平,由此也导致了许多由无人驾驶而引发的争论甚至事故。无人驾驶汽车隐藏的关键技术究竟是什么?
0 1环境感知
传感器探测环境信息,只是将探测的物理量进行了有序排列与存储。需要通过适当的算法从探测得到的数据中挖掘出我们关注的数据并赋予物理含义,从而达到感知环境的目的。可以理解成汽车利用传感器套件对车身周围的动摇和静态对象进行3D重构。
环境感知技术有两种技术路线,一种是以特斯拉为代表的以摄像机为主导的多传感器融合方案;另一种是以谷歌、百度为代表的以激光雷达为主导,其他传感器为辅助的技术方案。
0 2行为规划
说到行为规划也许大家会比较陌生,我们可以先从路径规划开始讲讲。
对于无人车来讲,若确定了目标地点的车辆位姿,车辆具体以怎样一条运动路径行驶到目标地点,即为路径规划。
为了将无人车的局部路径进行形象地归类、分析,引入了“行为”的概念。车辆在城市道路自主行驶时,它应具备车道保持、变换车道、路口直行、路口拐弯、掉头、绕障、智能启停、自动泊车等驾驶行为。行为的有序排列及有机衔接,方可完成整个无人驾驶任务。目前,针对无人驾驶决策与规划的专用芯片/计算平台包括英特尔-Mobileye开发的EyeQX和英伟达的NVIDIA Drive PX系列。
0 3车辆定位
无人驾驶汽车进行全自主行驶时,需要解决三个基本问题:1.车辆在哪;2.往哪儿去;3.怎么去。
车辆在哪其实就是对车辆的定位。定位方法有多种,比如卫星定位、地面基站定位、视觉或激光定位以及惯导定位等。
将定位技术应用到无人车上时,卫星定位可以解决大范围绝对位置定位、高速公路定位以及其他开阔空间定位问题,但是当车进入隧道、高建筑物路段或室内时,定位信号会不稳定或丢失。这时需要视觉或惯导等室内定位方式去弥补。
车辆定位会直接或间接影响车辆运动控制与行为决策的实现,甚至也是感知环境所需的重要信息。在执行已经规划出来的运动轨迹时,运动控制算法需要定位信息不断反馈实际的运动状态做实时的调整。在进行行为切换时,切换时机需要充分了解到车辆所处交通环境的位置。感知方面,比如利用SLAM技术构建地图,就需要车辆的相对定位信息。
0 4控制与执行系统
车辆控制平台是无人车的核心部件,控制着车辆的各种控制系统。车辆控制系统可以分为纵向控制(采用油门和制动综合控制的方法实现对预定车速的跟踪)和横向控制(包括对驾驶员行为的模拟和车辆动力学的分析)两个环节。
0 5高精地图与车联网V2X
为了更好的规避潜在风险,帮助车辆预知路面复杂信息,如坡度、曲率、航向等,无人驾驶往往需要结合实时的高精地图,而这种实时性,可以通过车联网(V2X系统)实现。
结束语
无人驾驶汽车是汽车界与机器人界碰撞、融合的产物,它汇集了机电一体化、环境感知、电子与计算机、自动控制以及人工智能等一系列高科技。汽车作为人类重要的交通工具,随着这些子技术的融合、发展与突破,必将变得越来越智能,最终实现全天候无人驾驶。
来源:搜狐